Kleisli category and database mappings

نویسندگان

  • Zoran Majkic
  • Bhanu Prasad
چکیده

This paper presents the semantics of database mappings in the relational database (DB) category, based on the power-view monad T and monadic algebras. The semantics can be interpreted as a computational model of viewbased mappings between databases, where each query (view-mapping) can be seen as a program, so that we can use the paradigm ”from values to computations”. The objects in this category are the database-instances. The morphisms of such DB category are used in order to express the semantics of view-based Global and Local as View (GLAV) mappings between relational databases such as those used in Data Integration Systems. Consequently, the semantics of database mappings in this DB category are defined based on the power-view monad T and the Kleisli category for databases, which can be ”internalized” in this basic DB

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data Base Mappings and Monads: (Co)Induction

In this paper we presented the semantics of database mappings in the relational DB category based on the power-view monad T and monadic algebras. The objects in this category are the database-instances (a database-instance is a set of n-ary relations, i.e., a set of relational tables as in standard RDBs). The morphisms in DB category are used in order to express the semantics of viewbased Globa...

متن کامل

Applications of the Kleisli and Eilenberg-Moore 2-adjunctions

In 2010, J. Climent Vidal and J. Soliveres Tur developed, among other things, a pair of 2-adjunctions between the 2-category of adjunctions and the 2-category of monads. One is related to the Kleisli adjunction and the other to the Eilenberg-Moore adjunction for a given monad.Since any 2-adjunction induces certain natural isomorphisms of categories, these can be used to classify bijection...

متن کامل

A RELATION BETWEEN THE CATEGORIES Set * , SetT, Set AND SetT

In this article, we have shown, for the add-point monad T, thepartial morphism category Set*is isomorphic to the Kleisli category SetT. Alsowe have proved that the category, SetT, of T-algebras is isomorphic to thecategory Set of pointed sets. Finally we have established commutative squaresinvolving these categories.

متن کامل

On Köthe Sequence Spaces and Linear Logic

We present a category of locally convex topological vector spaces which is a model of propositional classical linear logic, based on the standard concept of Köthe sequence spaces. In this setting, the “of course” connective of linear logic has a quite simple structure of commutative Hopf algebra. The co-Kleisli category of this linear category is a cartesian closed category of entire mappings. ...

متن کامل

Order-adjoint monads and injective objects

Given a monad T on Set whose functor factors through the category of ordered sets with left adjoint maps, the category of Kleisli monoids is defined as the category of monoids in the hom-sets of the Kleisli category of T. The Eilenberg-Moore category of T is shown to be strictly monadic over the category of Kleisli monoids. If the Kleisli category of T moreover forms an order-enriched category,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJIIDS

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2010